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Abstract
The popularity of Non-Uniform Memory Access (NUMA)
architectures has led to numerous locality-preserving hier-
archical lock designs, such as HCLH, HMCS, and cohort
locks. Locality-preserving locks trade fairness for higher
throughput. Hence, some instances of acquisitions can in-
cur long latencies, which may be intolerable for certain ap-
plications. Few locks admit a waiting thread to abandon its
protocol on a timeout. State-of-the-art abortable locks are
not fully locality aware, introduce high overheads, and un-
suitable for frequent aborts. Enhancing locality-aware locks
with lightweight timeout capability is critical for their adop-
tion. In this paper, we design and evaluate the HMCS-T
lock, a Hierarchical MCS (HMCS) lock variant that admits a
timeout. HMCS-T maintains the locality benefits of HMCS
while ensuring aborts to be lightweight. HMCS-T offers
the progress guarantee missing in most abortable queuing
locks. Our evaluations show that HMCS-T offers the time-
out feature at a moderate overhead over its HMCS analog.
HMCS-T, used in an MPI runtime lock, mitigated the poor
scalability of an MPI+OpenMP BFS code and resulted in
4.3× superior scaling.

Keywords Synchronization, Spin lock, Queuing lock, MCS
lock, Hierarchical lock, Abortable lock, Timeout lock.

1. Introduction
Multi-socket systems have become a norm rather than an
exception in modern server and HPC establishments. State-
of-the-art shared memory machines such as SGI UV [22]
and HP Integrity Superdome X [10] are not only multi-
socket but also multi-node. Multi-node, multi-socket sys-
tems along with the deep processor cache hierarchy lead
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to Non-Uniform Memory Access (NUMA) latencies. Main-
taining locality of reference is critical to achieving high per-
formance on NUMA architectures.

The emergence of NUMA architectures has propelled re-
searchers to develop various “locality-aware” locking algo-
rithms. Locality-aware locks prefer to handover a lock from
the lock holder to the “nearest” lock requester instead of the
“earliest” lock requester. This kind of locality bias reduces
the indiscriminate migration of shared cache lines (accessed
in the critical section and the lock’s internal data structures)
among different locality domains.

Hierarchical locks sacrifice fairness [5] to exploit locality.
In a hierarchical lock, on a highly contended system with a
deep NUMA hierarchy, a lock requester may have to wait
for an unusually long time when a distant NUMA domain
holds the lock. While spinning for a short time to acquire
the lock from a neighbor is desirable to enhance locality and
throughput, idle waiting for a long time hurts parallelism.
The following use cases motivate the need for allowing a
waiting thread to timeout and abandon the protocol: (1) A
thread in an application with sufficient parallel slackness [9,
24] may desire to discontinue a work chunk blocked on long
lock waiting and instead take up a different work chunk
not subjected to serialization, (2) A low-priority process
may want to temporarily abandon (or permanently abort) its
lock request to expedite the lock handoff to a high-priority
process, and (3) Database systems assume a deadlock when
no progress is observed for a long time, and they require the
timeout capability in their locks to unroll a transaction.

State-of-the-art abortable locks suffer from various limi-
tations. They introduce blocking wait (e.g., [20]), have un-
bounded space and time complexities (e.g., [19] and [8]),
lack full locality awareness (e.g., [20], [19], [8]), do not en-
sure starvation freedom (e.g., [8]), and incur high memory
management costs (e.g., [19], [8]). Hierarchical queue-based
spin locks with a timeout would offer greater flexibility for
application programmers to exploit locality of shared data
when available and abandon a long wait to exploit paral-
lelism that exists elsewhere in the system. However, state-
of-the-art hierarchical queue-based locks (e.g., [5]) lack the
timeout capability. Few, if any, verify their correctness.



We have designed the HMCS-T lock, which allows a
waiting thread to abandon on timeout. The HMCS-T lock
addresses the aforementioned challenges while being mind-
ful of the principles of the HMCS lock—exploiting local-
ity. It is challenging to incorporate the timeout capability in
the HMCS lock because of the dependency of successors at
each level on their predecessors to hand-off the lock through
the hierarchical tree. A timeout may happen when a thread
is waiting to acquire a lock at any level in the tree. Aban-
doning from an interior node in the tree is particularly chal-
lenging since it involves releasing already acquired lower-
level locks. Wait loops at various places in the protocol pose
daunting challenges in making the protocol non-blocking on
timeout. Furthermore, attention needs to be paid to maintain
locality in every step of the design. A design that addresses
these complications needs rigorous correctness (mutual ex-
clusion and livelock and deadlock freedom) and progress
(starvation freedom) guarantees.

The key idea in the HMCS-T lock is that an abandoning
thread leaves its queue node record [5] (aka QNode) intact
in the MCS queue structure with a special status flag indi-
cating that the owner has abandoned. When a lock holder
notices an abandoned successor, it passes the lock to the
next unabandoned successor. If no unabandoned successor
is found at a level, the release proceeds to find a waiting
thread at an ancestral level, if any, in the hierarchical tree. A
disciplined, locality-preserving abandonment policy handles
timeout while retaining the high performance of HMCS.

In HMCS-T, when an abandoned thread requests the
same lock again, instead of bringing a new QNode record,
it reuses its abandoned QNode. This design ensures a space
complexity linear in the number of participants. This “reuse”
design allows an abandoned thread to re-secure its original
position in the queue where it had previously abandoned.
Such thread can resume its wait notwithstanding its prior
abandonment if the lock was not already passed beyond its
position. A consequence of this design is that a thread can
opportunistically express its “locking intent” well before the
lock may be actually needed, possibly reducing the waiting
time when the need for the lock becomes imminent.

The HMCS-T lock ensures starvation freedom for threads
that can wait and ensures a bounded number of steps to
abandon (on timeout) or release the lock. Having all these
traits is uncommon in lock designs that admit a timeout [8,
19, 20]. For threads that do not admit a timeout, HMCS-T
retains the same starvation freedom and fairness guarantees
as the HMCS lock, even when intermixed with threads that
admit timeouts. We have proved the correctness of HMCS-T
via formal verification using the Spin [12] model checker.

The contributions of this paper are the following:

1. Design of a high-throughput queue-based hierarchical
spin lock with a timeout capability, which exploits local-
ity and ensures low overheads for abort and reentry.

2. Formal verification of correctness and progress guaran-
tees of the intricate algorithm.

3. Demonstration of the superiority of HMCS-T over other
abortable locks and demonstration of 34% speedup and
4.3× superior scaling in an MPI+OpenMP Graph500
BFS kernel by using the HMCS-T lock.

2. Background and Related Work
MCS [17] and CLH [15] queue-based locks do not al-
low abandoning once a thread has enqueued itself. Scott
and Scherer [20] devised MCS and CLH locks with a
timeout, which were not non-blocking. Scott designed the
non-blocking variants (MCS NB and CLH NB locks [19]),
which, unfortunately, introduced an unbounded worst-case
space and time complexity for a given number of threads.
The designs in [19] need explicit memory management be-
fore each acquisition with potential remote memory ac-
cesses, which becomes a bottleneck as we show later in our
experiments (cf. § 6.2). In contrast, HMCS-T ensures star-
vation freedom—the threads that do not timeout eventually
acquire the lock, and the threads that timeout terminate their
protocol in a bounded number of steps. HMCS-T has no loop
that cannot admit a timeout; it has a bounded space complex-
ity, and it does not require continuous memory management.
The improvements come with an intricate design and slightly
reduced performance compared to the baseline HMCS.

Jayanti [14] proposed a token-based abortable lock with
linear space bounds and logarithmic time bounds. Pareek et
al. [18] proposed a randomized algorithm to abortable locks
that can achieve sub-logarithmic remote memory references.
Marathe et al. [16] combined a fixed-length queue lock with
a back-off lock, relieving the design from expensive memory
management. None of these locks are NUMA aware.

Cohort locks [8] employ two levels of locks, treating
a system as a two-level NUMA hierarchy. The authors
present two timeout-capable cohort locks—a 2-level back-
off lock and a global backoff lock coupled with a local
CLH lock (A C BO CLH). Aborting a 2-level backoff lock
is straightforward since there is no per-thread state. To abort
an A C BO CLH lock, the authors use Scott’s CLH NB
lock [19] at the local level, which also suffers from repeated
memory management but isolates the problem to a socket.
These two abortable locks neither ensure starvation freedom
(for threads do not abort) nor bound the steps after timeout
(for threads that abort), unlike HMCS-T.

HMCS lock [5]. Since we are concerned with the timeout
capability in the HMCS lock [5], we provide the details of
HMCS first. HMCS employs a tree of MCS locks to leverage
multiple levels of locality in a NUMA hierarchy (Figure 1).
The tree structure mirrors the underlying NUMA hierarchy;
each locality domain has an MCS lock of its own, which is
contested by its subdomains. For example, all SMT threads
on a core may compete for an MCS lock designated for that
CPU core. Not all NUMA levels need be mirrored in the tree.
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Lock acquisition for each thread begins with compet-
ing for a designated leaf-level lock that corresponds to the
thread’s innermost NUMA domain. When a thread acquires
an MCS lock in the tree in an uncontended manner (no pre-
decessor), it proceeds to contend for its parent lock (if any)
in the tree. A thread that acquires the lock at the root of the
tree immediately enters the critical section. Any thread that
fails in immediately acquiring a lock in the tree waits and
receives that lock from its predecessor. The release protocol
also starts at a leaf of the tree implicitly passing all locks
held by the owner to its local successor, if any. A waiting
thread at the deepest node on a thread’s path to the root, typ-
ically, inherits all locks held by its predecessor. As a result,
when a successor is granted a lock, it immediately enters the
critical section without explicitly contending for other locks
along its path to the root. To prevent starvation, threads may
pass an HMCS lock within a locality domain for a bounded
number of times. HMCS does not admit a timeout.

Each interior node of the HMCS tree (HNode) encapsu-
lates an MCS lock, a queue node (QNode), and a pointer to
its parent HNode (Figure 2). Each HNode is pre-allocated in
the corresponding NUMA domain. Threads arrive with their
own QNodes and a reference to their leaf-level HNode. When
competing for a non-leaf-level lock, a thread uses a QNode

present inside the HNode dedicated for that domain.

Terminology. We consider a leaf lock of HMCS to be at
level 1 and the root lock to be at level n. We represent an
arbitrary level with the letter l. The tail pointer of an MCS

lock refers to the lock word [5, 17]. The tail pointer is null
when the lock is free and non-null otherwise. Although a
level-l MCS lock’s tail pointer is physically placed a level-
l + 1 HNode data structure, for the ease of prose, level-l
lock, level-l queue, and level-l QNode refer to the lock at
level-l, the MCS queue used for competing for the level-
l lock, and the constituent QNodes in that queue, respec-
tively. For example, a level-1 QNode is inside a level-1 queue,
which is used to compete for a level-1 lock. An HMCS
lock that has n lock levels is represented as HMCS〈n〉 and
the analogous HMCS-T lock is represented as HMCS-T〈n〉.
MCS≈HMCS〈1〉.

Two or more QNodes (and hence their owner threads) are
peers at level l, if their lowest common ancestral lock is at
level l. Two or more QNodes belong to the same domain at
level l, if they share a common lock at level ≤ l. In a se-
quence of locks (l)(l + 1) · · · (m), where 1 ≤ l < m ≤ n,
from level-1 to the root, a lock prefix refers to the sequence
(l)(l + 1) · · · (k), where l ≤ k ≤ m, and a lock suffix refers
to the sequence (k + 1) · · · (m). If a lock holder hands off
the lock to a waiting thread, we refer to it as “lock pass-
ing”. A thread “relinquishes” the lock if no thread is waiting
during the lock-passing attempt. A “release” refers to either
lock passing or relinquishing. SWAP refers to an atomic ex-
change operation. CAS refers to an atomic compare exchange
operation. On timeout a thread “aborts” or “abandons”.

3. Design of One-level HMCS-T
We first describe the HMCS-T〈1〉 protocol, which allows
abandoning in an MCS lock (i.e., HMCS〈1〉). In §4, we
generalize the design to an n-level HMCS-T lock.

Overview. The key idea of HMCS-T is that a thread
can abandon by updating its already enqueued QNode by
SWAPing a special flag, leaving the QNode behind in the MCS
queue. On noticing an abandoned successor, a lock-releasing
predecessor takes the additional responsibility of passing the
lock to an unabandoned successor in the queue. The protocol
provisions readmission of a previously abandoned requestor
into its earlier secured position, if possible. Figure 3 depicts
some important steps in the protocol.

Details. The HMCS-T〈1〉 encodes special values—
waiting (W), unlocked (U), abandoned (A), and recycled
(R)—in the status field of a QNode. Every QNode is initial-
ized with R value for its status field and null for its next
field on creation. Typically, a thread waiting to acquire the
lock has a W status in its QNode; a lock holder passes the
lock to its successor by SWAPing an U into its successor’s
status field. Symmetrically, a waiting thread on observing
its QNode’s status change from W to U infers the lock
ownership; a thread updates its QNode status to A when it
aborts on a timeout. A lock releaser that observes an A in its
successor’s status while passing the lock infers successor’s
abandonment and performs the additional work of releasing
the lock to an unabandoned successor, if any.
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t1 swaps its status to W. (c) t1 swaps the tail pointer to itself. (d) Since t1 has no
predecessor, it updates its status flag to unlocked (U) and becomes the lock owner. (e)
Threads t2 and t3 follow a similar protocol and get enqueued. (f) t2 times out and
CASes A in its status flag. (g) t1 begins releasing the lock by swapping t2’s status and
notices that t2 has abandoned. (h) t1 proceeds to t2’s successor and passes the lock to
t3. Also, t1 updates the next pointers to point to their predecessors in steps (g) and (h).
(i) t1 updates the status of t2 and t1 to R indicating their readiness for next round of
acquisition. After (f), t2 may re-enter the queue and transition the system back to (e).
Also, t2 may re-enter after (g) by swapping its status to W in (j) but it cannot acquire
the lock or reuse the QNode until t1 has passed the lock to t3 as shown in (k) and
updated t2’s status to R as shown in (l).

QNode maintenance. In HMCS-T, the next and status

fields of a QNode will be accessed by a predecessor even af-
ter the owner thread has aborted its acquisition. Hence, an
owner thread may not deallocate its QNode until the node
is marked for recycling. We use the C++ destructor to ease
the QNode maintenance. For convenience, each participat-
ing thread allocates an object (QNodeObject) that encap-
sulates a QNode along with a reference to the parent lock.
The object’s destructor waits until the object is marked for
recycling. The object’s constructor initializes the next and
status fields and sets the parent pointer. The acquire and
release protocols use a reference to this per-thread object. A
thread can reuse the same object across multiple episodes of
lock requests without having to reinitialize; for high perfor-
mance, the reuse is necessary. Listing 1 shows an example
usage model, which is applicable to any n-level HMCS-T.
The object can reside anywhere—stack, heap, or thread-
local storage. Heap allocation allows returning from a callee
stack frame without waiting (in the destructor) for the object
to be recycled. When used in C, the user must explicitly call
the constructor and destructor routines after allocation and
before deallocation, respectively.

Acquisition. A thread t begins its lock entry protocol by
SWAPing the value W to the status field of the thread’s QNode
q. The previous value of the status field distinctly indicates
the state of the QNode, which governs the next action taken
by t. Depending on whether the QNode is ready to use, aban-
doned previously, or in an intermediate state of being up-
dated by a predecessor, the following three scenarios arise:

1 // Initialize the lock giving it the machine topology
2 HMCST <3> hmcstLock (machineTopology);
3 #pragma omp parallel
4 {
5 // Assume threads are pinned to cores.
6 // Create and initialize the per -thread QNode object.
7 QNodeObject ctxt(hmcstLock);
8 for ( ... ) { // ctxt is reused many times
9 if (hmcstLock.Acquire (&ctxt , timeout)== SUCCESS) {

10 CriticalSection ();
11 hmcstLock.Release (&ctxt , timeout);
12 } else {
13 NonCriticalSection ();
14 }
15 } // end for -loop
16 } // The destructor ensures ctxt is ready to free.

Listing 1: An example 3-level HMCS-T lock in an OpenMP C++ code.

Recycled node (R): The QNode q is ready for use. In this
case, t, by-and-large, follows the MCS lock’s enqueue pro-
tocol: swaps the tail pointer to point to q and if t has no pre-
decessor, it becomes the lock owner, overwriting the status
flag to U (not done in the original MCS), otherwise, t spins
either until the lock is granted (some predecessor changes
q.status to U) or a timeout occurs. On timeout, t CASes
the value A to q.status and abandons the protocol if CAS
succeeds. CAS failure implies lock acquisition.

Previously abandoned node (A): It implies t is attempting
to re-acquire a lock that it had previously abandoned. In
this case, the lock has not yet been passed beyond t by any
of its predecessors. Hence, t resumes its wait by directly
jumping to the wait loop in the MCS acquisition protocol.
Note that swapping the tail pointer and updating the prede-
cessor’s next field are elided. While waiting for the lock, if
t times out once again, it CASes an A into its q.status and
exits if CAS succeeds. CAS failure implies lock acquisition.

Node unlocked after abandonment (U): It implies t must
have abandoned previously, and some predecessor p must
have tried to grant the lock to t by SWAPing a U value.
Since t had already abandoned the node, p is now in the
process of passing the lock to a waiting successor in-line
past t. Once, p has passed or relinquished the lock, it will
change the status of t’s QNode q to R. In this case, t waits
for q.status to change to R. After q.status becomes R,
t goes through the full enqueue process following the steps
listed for a “recycled node”. While waiting for the status
to change to R, however, if t times out, it CASes an U to
revert q.status and abandons the wait on CAS success.
Failure to CAS implies q is recycled, and t may choose one
of the following options: (1) [optimistic] follow the steps
listed in the “recycled node” case and attempt to acquire
the lock hoping to get it immediately without waiting or
(2) [pessimistic] return as if the lock waiting timed out.
We have implemented the optimistic strategy.

The status flag shall never be W when SWAPing at the entry.

Release. A lock releasing thread performs actions that al-
low abandoned QNodes in the queue to become reusable by
their owner threads. When a thread, r, is releasing the lock
by updating the status field of its successor s with a value
U, the successor could be simultaneously updating its status
field with an A in an effort to abandon. HMCS-T’s release



protocol is modified to use a SWAP on successor’s status field
unlike an unconditional store used in the original MCS lock.
The releaser r may have one of the following cases based on
the previous value observed in the status field of the succes-
sor:

Waiting successor (W): It implies r successfully granted the
lock to s, which was still waiting.

Abandoned successor (A): It implies s abandoned the lock
before r performed its release. In this case, r “imperson-
ates” as if s were releasing the lock to its successor and r
repeats one of these two steps, if s has a successor.

In case the releaser r finds no waiting successor in the
MCS queue, it CASes the tail pointer to null, similar to
the MCS lock. In the “abandoned successor” case above,
once a releaser takes the role of its successor, it uncondi-
tionally overwrites its successor’s next field to its prede-
cessor, which aids in the reverse traversal. Thus, the next

pointer is reused as a predecessor pointer. It is legal to trash
the next pointer and reuse for another purpose since no one
will be using it beyond this point. Once r has successfully
passed or relinquished the lock, it follows the chain of pre-
decessor pointers (now stored in the next fields of aban-
doned QNodes), unconditionally setting the status in each
abandoned QNode to R. This step essentially marks aban-
doned (and potentially re-entered) QNodes to be ready for
reuse. Any attempt to reuse an U marked QNodes by their
owning threads for an acquisition during this intermediate
state will result in the acquire protocol to land into the “node
unlocked after abandonment (U)” case.

The order of recycling the abandoned QNodes is LIFO.
One can remember the first node and the last node and fol-
low FIFO ordering; we chose LIFO with the intention of al-
lowing newcomers a better opportunity since they will have
more time left to reenqueue and likely succeed. The releaser
r, does not eagerly flip the status of abandoned QNodes to
R during its left-to-right forward journey because doing so
allows abandoned threads to reenqueue and abandon repeat-
edly making r’s time complexity unbounded. Marking the
QNodes after the lock release bounds the release protocol’s
time complexity to linear in the number of participants.

Non-blocking release. The MCS lock has an unbounded
wait in its release protocol. In MCS, if a lock releaser, r,
notices no successor, it CASes the tail pointer to null. How-
ever, in the meantime, a new thread, s, might have swapped
the tail pointer, and s may be in the process of enqueueing.
On CAS failure, while the original MCS protocol waits in-
definitely until the successor advertises itself by updating the
next field of its predecessor, HMCS-T deviates from this be-
havior and makes the release protocol non-blocking. To ac-
complish the non-blocking release, HMCS-T obeys the fol-
lowing protocol (see Figure 4 for an example):

Release: On failure to CAS the tail pointer to null, the
releaser r attempts to CAS a special value M (iMpatient)

lock
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U

null
W

r s lock

M
U
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W
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Figure 4: (a) Thread r owning the QNode qr is releasing the lock when another thread
s arrives, but s is slow in updating qr’s next pointer to itself. (b) r times out and
CASs a special value M in qr.next and leaves. (c) Later s SWAPs a pointer to itself
into qr.next. (d) Having observed the special value M, s updates qr.status to R
indicating that qr can now be reused. Also, s updates its status to unlocked (U) and
becomes the lock owner.

on to the next field of its QNode qr. Note that qr may not be
owned by r; if successors of r had abandoned, r would be
impersonating the last one in the chain of abandoners.
If the CAS succeeds, r’s forward journey is over. However,
r does not toggle qr.status to R on its return journey
through the predecessors because it is unsafe to recycle qr
until s has published itself by updating qr.next. If the CAS
fails, because s published itself by updating qr.next in the
meantime, then r follows the next pointer to s and SWAPs
qs.status to U. The procedure may recur if s aborts
before r updates qs.status.

Acquire: To perform a symmetric handshake with the re-
lease protocol, the acquire protocol of a successor s per-
forms a SWAP on the next field of its predecessor. If s sees
the special value M in its predecessor’s next field (i.e.,
qr.next), it infers that the predecessor abandoned having
become impatient waiting for its successor. Consequently,
s updates its predecessor QNode’s status to R indicating that
the predecessor node (i.e., qr) can now be recycled. Also,
since s had no “legal” predecessor, it implies lock acquisi-
tion. s updates its status to U and enters the critical section.

4. Design of N-level HMCS-T
In principle, if a thread wants to abort in HMCS-T〈n〉, it
updates the status flag of the QNode it is waiting on to A and
releases all of its lower-level locks. Symmetrically, if a lock
releaser encounters an abandoned successor, it continues
looking for a waiting thread until it has found one at the
current level; otherwise, it continues to search at the parent
level. The details are more involved. Figure 5 presents the
key steps of the HMCS-T protocol; we provide the detailed
description below.

Details. If a thread (say α) times out while waiting for a
level-l lock, it updates the status of its QNode (the one it used
for competing for the level-l lock) to A. A level-l predecessor
of α will ensure passing the level-l (and above) locks to a
level-l waiting successor past α, similar to HMCS-T〈1〉.

If α times out while competing for a level l > 1 lock,
it must have already acquired the locks at levels [1, l − 1].
By now, there could be other threads waiting at these lower
levels (possibly some already abandoned) relying on α to
pass the global lock, which α failed to acquire. Hence, af-
ter abandoning at level l, α should release locks at levels
[1, l − 1] (see Figure 5(a)). Naively, α could release all locks
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in the same domain as α under level 4. (b) α attempts to pass the level 1-3 locks
to a successor at level 1 but finds none. α ascends to level 2 and passes the level 2
and 3 locks to the waiting successor β. α marks the status of all QNodes along the
path to P, temporarily disallowing their reuse. (c) β updates its status from P to C. β
recognizes (not shown) that it owns the level 3 lock by observing the QNode status
of C on ascending to level 3. (d) concurrently, α traverses the predecessors in level 2
and marks them ready for reuse. By the time α descends to level 1, γ and δ enqueue
at level 1 with γ already abandoned. (e) α passes the level-1 lock to the first waiting
successor δ, (f)α traverses the predecessors in level 1 and marks them ready for reuse.
Concurrently, δ updates its status to C and proceeds to compete at level 2.

from level l − 1 to 1, in that order, to a first waiting succes-
sor, forcing all of its successors at each level to compete at
their parent levels. This naive design, however, suffers from
the following problems: 1) releasing all l − 1 locks is extra
work forα compared to simply passing a prefix of locks (suf-
fix from α’s viewpoint) to the lowest common descendent, 2)
top-down traversal makes high-latency releases compulsory,
and 3) every successor at each level has the additional work
of competing at the next level.

Our solution is a disciplined, two-pass lock-passing ar-
rangement that exploits locality and minimizes work. In a
forward pass, starting from leaf to level l − 1, α finds the
lowest common waiting descendent β and passes all locks
it has held starting from that level till level l − 1 to β. For
example, in Figure 5, α abandons at level 4 and passes the
already acquired level 2 and 3 locks to β, which was waiting
at level 2. β, now, skips acquisitions at levels that it inherited
from α by noticing the special value (C) left by α in the sta-
tus fields of the QNodes at levels that are already acquired. If
α found β at a level i < l − 1 , α’s forward journey stops at
level i. In a reverse path from the level i − 1 down to level
1, α releases the locks it had not passed during its upward
journey. During the forward pass, α would have marked ev-
ery abandoned successor along the way as temporarily not
reusable; it marks them as reusable during its reverse pass.

Deviation in internals from HMCS. HMCS protocol uses
its status field to encode the passing count—the number of
times the lock has been circulated locally [5]. The passing
count is incremented on each successive passing to a peer,
and the global lock is passed to a successor s by signaling it
with a symbolic value V ∈ [2, θ], where θ is the threshold of
local passing. A releaser signals its successor s with a spe-
cial value ACQUIRE PARENT (P), either when the threshold
(θ) of local passing is reached or when s arrives after the re-

leaser already released the global lock at an enclosing level.
A waiting thread s that is signaled with the special value (P),
immediately resets its status to COHORT BEGIN (C, numer-
ically equal to 1), which indicates: (1) s’s ownership of the
local lock alone and hence the need to compete at the parent
level, and (2) the start of a new round of local passing.

In HMCS-T, the meaning of P is generalized to signal
a successor s that it now inherits a prefix of locks (instead
of the local lock alone) starting at the current level on s’s
path to the root. Symmetrically, the status C is generalized
to indicate that the thread owns a prefix of locks starting at
the current level but not all locks on the path to the root.
The value P can be used either when a thread aborted at
an ancestor level (and hence passing a lock prefix) or when
it reached the local passing threshold. In either case, the
successor does not inherit the global lock; the successor
turns its status to C and proceeds to compete at ancestral
levels, similar to HMCS.

Acquisition. Acquisition begins with competing for a des-
ignated level-1 lock. The acquisition protocol of any level-l
lock starts by SWAPing the value W to the status field of the
QNode q; remember that the leaf-level QNodes are provided
by the client threads and the interior QNodes at each level are
pre-allocated within HNodes. The previous value of the sta-
tus field of the QNode governs the subsequent actions taken
by the acquire protocol for a thread t. HMCS-T’s non-root-
level lock has more status flags to handle. The following four
cases arise based on the previous value of the status flag:

Recycled node (R): This implies q is reusable. HMCS-T
enqueues q by SWAPing the tail pointer of the correspond-
ing level-l lock. Subsequently, one of the following ensues:

1. Uncontended acquisition (tail was null): t updates the
q.status to C (the beginning of a new cohort) and pro-
ceeds to compete for the parent level lock,

2. Inheritance of all locks (status becomes a legal passing
value, V): acquisition ends successfully,

3. Acquisition of a prefix of locks (status becomes P): t
updates q.status to C and proceeds to the next level,

4. Timeout: t CASes an A into q.status and returns failure
if CAS succeeds. CAS failure means successful acquisition.

Previously abandoned node (A): This implies the QNode q
was previously abandoned either by t itself or a thread
belonging to the same domain. HMCS-T, in this case, skips
enqueuing q and resumes the spin wait on q.status.

Inherited ancestral lock (C): This happens when the cur-
rent level (l) lock was already acquired by a thread p be-
longing to t’s domain at level l or below. Since q.status

was C, p must have started a new round of local passing at
level l, which implies p did not inherit all locks on its path
to the root, and instead it must have proceeded to compete
at higher levels (see “Recycled node” case 1, 3). Also, p
must have abandoned at some level j > l and subsequently,
p found t as its lowest-common descendent at a level k < l



and passed a prefix of locks to it. Hence, t already owns
the lock at level l. Since t swapped a W during its entry, it
reverts q.status to C and proceeds to level l + 1. Revert-
ing is necessary to allow a subsequent thread to acquire this
level lock if t also were to abort at a higher level.

Node unlocked after abandonment (V and P): V ∈ [2, θ]
symbolizes that a predecessor already stepped upon an
abandoned node. This case is analogous to the U case of
HMCS-T〈1〉: either t itself or some other thread belonging
to the same domain as t at level l must have previously
abandoned at level l; t’s predecessor p (a level l peer)
must have tried to pass the lock to t; p, having noticed
that t had abandoned, is now in the process of passing
the lock to a waiting successor past t. p will, eventually,
revert q.status to R once it releases the lock. Hence, t
waits for q.status to change to R and then re-enqueues q
afresh into the MCS queue at level l obeying the protocol
already listed under “recycled node”. While waiting for
q.status to become R, if t times out, it CASes the value
P into q.status and aborts if CAS succeeds. CAS failure
happens iff q.status becomes R allowing t to reenqueue
q optimistically hoping to acquire the lock without waiting.

The status flag shall never be W when SWAPing at the entry.
Also, if a thread ends up acquiring the lock at a level when it
is about to abandon but does not inherit all locks, it continues
to attempt for the next level lock, optimistically hoping to
acquire the next level lock in an uncontended manner. If,
however, it fails to acquire the next level lock, it begins the
abandonment process at that level.

Abandonment. To abandon, while waiting for a lock at
level l, the abandoner α obeys the following protocol:

1. α, first, SWAPs the value A into the status flag of its QNode
used for competing at level l.

2. If at non-leaf level (that is l > 1), α attempts to pass its
already acquired locks (levels [1, l−1]) to the lowest com-
mon waiting descendent thread. That is, to retain maximum
locality, α starts looking for a waiting successor starting
at the leaf level (curLevel=1). Lock passing is similar to
HMCS-T〈1〉, looking for the first unabandoned successor.
α SWAPs the special value P into its successor s’s status
field, which signals s (if waiting) to acquire the necessary
suffix locks on its path to the root starting at curLevel+1.

3. If α succeeds in passing the lock prefix to a waiting peer
at curLevel, it goes to Step #4, otherwise (the next

pointer of the right-most peer is null), α ascends to the
next level (if any) and recursively performs Step #3 with
curLevel=curLevel+1.

4. By now, α either passed its lock to a waiting successor or
relinquished the lock by CASing the tail pointer to null.
α traverses the QNodes at the curLevel from right to left
flipping the flags of each QNode to R, indicating that those
QNodes can now be recycled.

5. If curLevel>1, α descends to its children level
(curLevel=curLevel-1). Having already passed its ac-
quired locks at levels > curLevel, α now needs to release
the lock at curLevel. Let m be the QNode that had its next
pointer null when α ascended to the next level in Step
#3. It is possible for more threads to have enqueued past
m when α was busy passing the upper-level locks. Start-
ing at m.next, if any, α attempts to pass the curLevel

lock to a waiting curLevel peer. Since passing the lock at
curLevel in this phase does not correspond to passing all
upper-level locks (which were already released by now), α
SWAPs the special status flag P, indicating the successor to
compete at the next level. If no peer is found, α relinquishes
the curLevel lock by CASing the tail pointer to null. Hav-
ing released the curLevel lock, α performs a right-to-left
traversal of all QNodes whose flags it had SWAPed to P and
flips them to R, indicating that they can now be recycled.
Figure 5(d)-(f) captures this case. α now repeats Step #5.

At any point, if a lock releasing thread times out while
waiting for a successor to update its next pointer, it uses
the aforementioned non-blocking technique. Also, at each
level, once a releasing thread steps past its abandoned suc-
cessor node, it uses the next pointer to serve as a predecessor
pointer for its return journey.

Release. Lock release is analogous to the steps followed in
the abandonment process, except,

1. The ascendance continues till the tree root if no waiting
successor is found, and

2. If the value V of the releaser r’s representative QNode’s
status flag is less than the local passing threshold at level
l, then r signals its successor with V+1, similar to HMCS.
If the passing threshold has reached, then the r releases the
parent lock followed by signaling the successor with P to
indicate that the successor should compete at the next level.

5. Discussion
Fast-path optimization. To avoid the overhead of multiple
levels of lock acquisitions under no contention, we have
adapted the fast-path strategy described in [6] into HMCS-T.
We omit the details of the adaptation for brevity.

Atomic operations. Our use of SWAP and CAS operations
may look heavy handed, but they are applied on nearer
neighbors, which do not generate remote coherence traffic.
Recent studies [7] show that the atomic operations intro-
duce no more than 1.15× overhead compared to loads and
stores. Not all atomic operations are on the critical path. Un-
contended acquisition in HMCS-T〈1〉 is same as the uncon-
tended acquisition in MCS with an additional SWAP on the
status field. Uncontended release in HMCS-T〈1〉 is same as
the uncontended release in MCS. Uncontended acquisitions
in deeper HMCS-T locks cost no more than HMCS-T〈1〉 due
to the fast path optimization.



Memory overhead and lock abuse. HMCS-T, like other
hierarchical locks, trades memory for speed. A prior
work [19] on abortable locks traded speed for memory. Our
evaluation shows that the node recycling is so time consum-
ing on NUMA machines that the locks described in [19]
offer little competition to HMCS-T. Preallocated QNodes
achieve a lower memory footprint compared to [19] under
high abort rates. However, one must use precaution when us-
ing a deep HMCS-T. HMCS-T must be curated for a given
architecture. HMCS-T is not a universal replacement for all
locks in a program. One should opt into HMCS-T when con-
tention is expected. A contended HMCS-T’s memory con-
sumption is no worse than that of a contended MCS lock
since in the worst case HMCS-T would require 2× more
space; much less in practice. Modern many-core processors
with 10s of MBs of cache can accommodate thousands of
HMCS-T locks in less than 1% of their last-level cache.

Design options. On finding an abandoned successor, in-
stead of traversing subsequent successors, one may choose
to ascend to ancestral levels to increase the chance of find-
ing a successor and reduce the critical path length. However,
the cost of remote access is often much higher than several
local accesses. The naive design of releasing ancestral locks
instead of releasing the peers first causes up to 3.2× perfor-
mance loss compared to our optimized strategy. It is straight-
forward to enforce a bound on how many peers to inspect
before ascending to the parent level based on an analytical
machine model similar to the one discussed in [5].

Hierarchical locks are best served when threads are
pinned to cores. Thread migration makes HMCS-T start its
new acquisition in its new domain iff the leaf-level QNode is
already recycled.

IsLocked() Interface. One can expose an IsLocked()

API over HMCS, which returns the boolean LOCKED or
NOT LOCKED based on whether or not any thread already
holds the lock. A “try lock” can be built using such interface.
If IsLocked() returns NOT LOCKED, the user still has to de-
cide whether to acquire the lock with a timeout (HMCS-T)
or wait until the lock is granted (HMCS). In summary, the
timeout capability is indispensable.

Correctness. HMCS-T is a very involved protocol; the sys-
tem is stateful. HMCS-T guarantees mutual exclusion, live-
lock and deadlock freedom under any situation, and starva-
tion freedom for non-aborting threads. We follow a multi-
step approach to prove these guarantees. We provide a de-
tailed proof in a separate document: http://github.com/
HMCST/hmcst, which relies on the Spin [12] model checker.

Complexity of HMCS-T. Let us assume the system has
n lock levels and each lock at a level i is contested by ki
descendants. Hence, the total number of participants (maxi-
mum threads) in the system is N =

∏n
i=1 ki.

Space complexity: The space complexity depends on
the pre-allocated HNodes in the tree. A deeper tree has a

larger space complexity. For a given number of participants,
the tree depth depends on the machine topology. A loose
bound assumes a binary tree. Hence, for a system with N
participating threads, there can be at most N pre-allocated
HNodes and the protocol does not allocate any more HNodes.
Hence, the space complexity per lock is O(N).

Time complexity: Discussion about time complexity is
useful only in light of timeout. Once a timeout occurs, we
would like to know how many steps are needed to either
abandon or release the lock. Due to its optimistic design,
a thread that times out waiting for a leaf-level lock may
acquire all locks in n steps followed by releasing all n locks.
Releasing n locks, in the worst case, can take ki steps in
each of ith level from 1 to n in a bottom-to-top sweep and ki
more steps in a top-to-bottom sweep. Hence, the worst case
acquire followed by a release after timeout is bounded by
n +

∑n
i=1 2ki steps. The worst case abandonment happens

when a thread that times out waiting for a leaf-level lock
acquires n − 1 locks but fails to acquire the root-level lock
and subsequently releases all n − 1 locks. Hence, the worst
case abandonment is bounded by n− 1 +

∑n−1
i=1 2ki steps.

The asymptotic cost on the critical path when all threads,
except the lock holder, have aborted is

∑n
i=1 ki. The bound

can be tightened to (n−1)+kn via the previously proposed
alternative of ascending to the parent level on finding an
aborted successor.

6. Evaluation of HMCS-T
In this section, we evaluate HMCS-T by comparing it with
various locks. We use an 8-blade, 16-socket HP Integrity
Superdome X [10] shared-memory machine. Each socket is
an 18-core, 2-way SMT Intel Xeon E7-8890V3 processor
clocked at 2.5GHz. Blades are interconnected with a custom
ASIC. The system has a total of 576 hardware threads. L1,
L2, and L3 cache sizes are respectively 32KB, 256KB, and
45MB. A pair of sockets on the same blade are connected
over QPI [13]. The system has two on-chip, 2-channel DDR4
memory for a total of 12TB. We used g++ v4.8.3 compiler
and parallelized code via OpenMP. Unless stated otherwise,
all experiments use a compact binding of threads to cores; a
thread will not be bound to another NUMA domain until the
current domain is fully populated; the next chosen NUMA
domain will be the nearest possible one.

Locks: We use the HMCS-T locks of 1, 2, 3, and 4 levels
of hierarchy in our studies. A shallower lock, HMCS-T〈1〉
does not respect locality. An HMCS-T〈2〉 exploits the lo-
cality within a node shared by two sockets but ignores the
locality within a socket. An HMCS-T〈3〉 exploits the local-
ity within a socket shared by 18 cores, in addition to the
behavior of HMCS-T〈2〉 but ignores the locality of SMTs
sharing a core. An HMCS-T〈4〉 exploits the locality within
a core shared by two SMTs, in addition to the behavior of
HMCS-T〈3〉. An HMCS〈n〉 has a symmetric configuration
as an HMCS-T〈n〉 but lacks the timeout capability.

http://github.com/HMCST/hmcst
http://github.com/HMCST/hmcst


We also compare with a Test-And-Test-And-Set lock with
timeout (TATAS-T), CLH NB and MCS NB locks [19, 21],
and A C BO CLH lock [8]. Our A C BO CLH lock mimics
the implementation described in [8]; we form a 2-level hier-
archy where cores sharing the same socket form a cohort.
For the locks with a cohort property (HMCS, HMCS-T, and
A C BO CLH), we set the passing threshold to 64 [8].

§6.1 compares HMCS-T with HMCS using a micro
benchmark. §6.2 compares HMCS-T with other abortable
locks via a splay tree case study. §6.4 demonstrates
the virtue of HMCS-T by exploiting parallel slackness
in an MPI+OpenMP Graph500 code and improves its
communication-computation overlap.

6.1 HMCS vs. HMCS-T
An HMCS〈n〉 serves as an upper (lower) bound for the
throughput (latency) of HMCS-T〈n〉 when the timeout is
infinite. To assess the overhead that HMCS-T adds atop
HMCS, we compare them via a micro benchmark: a tight
loop of lock acquire and conditional release. We precisely
measure the CPU cycles for acquire and release via the
x86 rdtsc instruction. The benchmark while synthetic is
appropriate for the intended comparison.

Figure 6 and 7, respectively, show the throughput and
round trip latency (successful acquisition plus release) when
the timeout is set to 1K, 10K, and infinite CPU cycles.
It is evident from Figure 6 that every HMCS-T instanti-
ation closely follows the throughput of its corresponding
HMCS counterpart. The gap narrows as the timeout in-
creases. Figure 7 shows that the latency for successfully ac-
quiring a lock is strictly bounded by the chosen timeout.
If lock acquisition is not possible within a given timeout,
thread aborts in HMCS-T, and thus the latency of success-
ful acquisitions reaches a plateau, unlike HMCS. At infinite
timeout, HMCS-T〈n〉’s latency is very close to that of its
HMCS〈n〉 counterpart. In-general, the throughput of HMCS〈4〉

> HMCS-T〈4〉 > HMCS〈3〉 > HMCS-T〈3〉 > HMCS〈2〉 > HMCS-T〈2〉 >

HMCS〈1〉 > HMCS-T〈1〉. Not all latency appears on the critical
path. The wait time during an acquire is not on the critical
path. Once global lock is handed over to a legal successor,
rest of the release protocol is not on the critical path. Hence,
the throughput is unaffected after 10K CPU cycles timeout.

Table 1 shows the throughput degradation in HMCS-T〈n〉
over the corresponding HMCS〈n〉 at timeout=∞. The data
shows the pure protocol overhead that an HMCS-T incurs
to support the abort feature. Under no contention (1 thread),
the overhead is fairly low (about 1.25×) in any HMCS-T
lock; the degradation does not increase noticeably with the
increase in the depth of the lock, which is due to the afore-
mentioned fast path. The worst case degradation is 3.85×
observed for HMCS-T〈4〉 at four threads. This is because of
the often missed opportunity to pass to an SMT peer and the
presence of subsequent lock levels leads to a lengthy path of
relinquishing parent locks preventing local passing benefits.
HMCS-T〈4〉 is an overkill at such low thread count setting.

Table 1: Throughput degradation in HMCS-T〈n〉 wrt HMCS〈n〉 at timeout=∞.

Threads: 1 2 4 8 18 36 72 144 288 576 GeoMean
HMCS-T<1> 1.22x 1.32x 1.12x 0.97x 0.99x 0.97x 1.04x 0.85x 1.11x 1.09x 1.06x
HMCS-T<2> 1.27x 1.79x 1.1x 0.99x 0.97x 0.97x 1.21x 1.19x 1.19x 1.19x 1.17x
HMCS-T<3> 1.26x 1.92x 1.21x 1.02x 1.00x 0.95x 0.98x 1.00x 1.00x 1.00x 1.11x
HMCS-T<4> 1.27x 2.47x 3.85x 1.68x 1.73x 1.75x 1.74x 1.75x 1.76x 1.79x 1.89x

All other locks incur no more than 1.92× overhead. The av-
erage overhead is under 1.11×, except for HMCS-T〈4〉.

To further understand the overheads involved, Figure 8
and Figure 9 decompose the round-trip latency into the la-
tency for successful acquisition and release. We make the
following observations:

1. Comparing Figures 8 and 9, acquisition accounts for the
bulk of the latency (up to 106 cycles) and outweighs the la-
tency for release (under 103 cycles) by orders of magnitude
between the same pairs of HMCS and HMCS-T locks .

2. Figure 9 shows that the difference in release latency be-
tween an HMCS and the corresponding HMCS-T can
be high. While HMCS stabilizes at about 25 cycles,
HMCS-T〈3〉 and HMCS-T〈4〉 stabilize at about 200 cy-
cles (8× higher). The worst case happens for HMCS-T〈1〉
at 576 threads, which is up to 28× more than HMCS〈1〉.
Most importantly, the latency does not grow either with
the increase in the number of threads or by changing the
timeout. We note that the release latency of 200 cycles for
HMCS-T〈3〉 and HMCS-T〈4〉 despite their longer critical
paths is faster than MCS NB and CLH NB, which respec-
tively take about 2300 and 1100 CPU cycles (not shown).

3. Figure 9 shows that the release latency of a shallower
HMCS-T is higher than the release latency of a deeper
HMCS-T despite the additional cost of releasing parent-
levels in a deeper HMCS-T. This is because of two reasons:
(1) it is faster to release the lock in a deeper HMCS-T
due to the locality of successors, and (2) ascending to
ancestral levels in the tree during lock release exponentially
increases the chances of finding a waiting successor and
avoids inspecting aborted threads in a peer domain.

With zero timeout (not shown), the time to abandon the
protocol from the start of acquisition is under 140 cycles for
HMCS-T〈1〉, HMCS-T〈2〉, and HMCS-T〈3〉 and 1K cycles
for HMCS-T〈4〉. Beyond 1K cycles timeout, all HMCS-T
locks accurately honor the client-chosen timeout. Overall,
the HMCS-T locks maintain their competence even after
adding the abort feature and offer high timing fidelity.

6.2 HMCS-T vs. Other Abort Locks on Splay Trees
Splay trees [23] are self-adjusting binary search trees with
a caching behavior—the last searched item is brought to
the tree root and recently searched items appear near the
root. Any operation on a splay tree, including a lookup, may
involve tree rotations; hence locks are necessary.
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Figure 6: Lock throughput of HMCS-T vs. HMCS. Each HMCS-T closely follows its HMCS counterpart.
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Figure 7: Round trip latency of HMCS-T vs. HMCS. Each HMCS-T closely follows its HMCS counterpart at∞ timeout and offers bounded latency at other timeout values.
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Figure 8: Acquisition only latency of HMCS-T vs. HMCS. Acquisition latency governs the total latency.
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(c) Timeout:∞ CPU cycles.

Figure 9: Release only latency of HMCS-T vs. HMCS. The lock release in HMCS-T is slower than HMCS but its contribution to the overall latency is insignificant.

We create a setup where all threads attempt to perform a
lookup operation on a global splay tree when holding a lock
(critical work). On lock timeout, a thread performs some
“other” work (non-critical work). The non-critical work is
a thread-local splay tree and hence it does not require any
locking. Using splay tree lookups both inside and outside
the critical section allows us to compare both critical and

non-critical work accomplished by various locks in a uni-
form way. Also, instead of idle spinning outside the criti-
cal section, switching to a different work chunk pollutes the
cache, which represents real world situations.

Our global and thread-local splay trees each have 8K
nodes. For both kinds of trees, 90% of the lookups are served
by the same key, and the remaining 10% are for the 64



numerically adjacent keys (not necessarily nearby in the tree
organization). Note, however, that not all the 90% of the
global tree lookups hit at the root since a previous lookup,
either by the same thread or by another thread, could have
rotated the tree. Furthermore, we change the “hot node”
every second to a randomly chosen node from the tree.

A superior lock should deliver high lock throughput and
abort swiftly on a timeout; that is, it shoud show high
throughput on both global and local tree operations. Fig-
ure 10(a) compares the throughput of various abortable locks
at 10K CPU-cycle timeout. Throughput is measured as to-
tal tree lookup operations performed per second, which in-
cludes both local and global tree operations. Figure 10(b)
and Figure 10(c) respectively decompose the throughput into
global (critical) and local (non-critical) work components.
We have clipped the lines when the throughput fell below
10K acquisitions per second for the global tree.

We notice that a deeper HMCS-T lock offers higher
throughput than a shallower HMCS-T on the global tree.
The global-tree throughput drops with increasing concur-
rency (Figure 10(b)) because the working set increases lin-
early with the number of threads, which causes the threads
compete for the shared cache. For locks that can abort
swiftly on timeout (HMCS-T, TATAS, and A C BO CLH)
the throughput of the local tree operations increases linearly
as the number of threads increase beyond 18. All locks ex-
cept MCS NB and CLH NB show comparable throughput
on their local-tree operations.

CLH NB and MCS NB [19] locks have dramatically
lower throughput compared to HMCS-T locks both on the
global tree and local trees. This is because their memory
management overhead is excessive. Frequent aborts severely
affect node recycling. In the CLH NB lock, for example,
when a thread aborts, it leaves its QNode in the CLH queue
to be freed by its successor. However, if the successor also
aborts, the QNode is not freed, and the task is delegated
to some other successor. When aborts are common, many
QNodes are left unreclaimed in the CLH queue. Each thread
maintains a list of QNodes it allocated (local list). Ev-
ery new acquisition sweeps its local list looking for
a recycled node. When successors keep aborting, none of
the previously allocated QNode become available for reuse,
and hence almost every new acquisition allocates a new
QNode (via malloc) and appends it to its local list The
local lists keep growing increasing both memory foot-
print and time spent unsuccessfully searching for a free node
on each acquisition. Since the local list searching time
keeps growing, the timeout happens immediately after allo-
cation, leaving no time to recycle an aborted predecessor.
Frequent abort and lengthy allocation time feed back into
each other further aggravating the problem.

The average time to sweep the list and allocate a
new QNode took ∼900K CPU cycles in CLH NB at 10K
and 100K cycle timeout thresholds. The code spent more

than 90% of the time trying to recycle QNodes in the
alloc local qnode procedure incurring more than 97%
of its L2 cache misses in the same procedure. As a result,
CLH NB and MCS NB locks are unsuccessful in acquir-
ing the lock within 10K CPU cycles. The allocation time
reduced to 700 cycles only after the timeout was above
106 CPU cycles. Since the lock overhead consumes most
of the execution time, it results in reduced throughput of
non-critical work also. In contrast, HMCS-T’s preallocated
QNodes and their reuse keep the protocol overhead small.

The memory usage and its overhead wrt TATAS-T at 10K
timeout with 576 threads is shown in the left half of Table 2.
CLH NB and MCS NB locks have very high memory usage
due to repeated allocations when the nodes cannot be recy-
cled. The numbers remain the same at 100K timeout (not
shown). We measured that TATAS-T has a huge skew in the
lock distribution—on 70% occasions, the lock holder is the
same as the previous one causing thread starvation [19, 20].
A C BO CLH also suffers from starvation.

To quantify the readmission into a previously abandoned
QNode, we profiled how often a thread resumes from its
abandoned node. HMCS-T〈1〉, HMCS-T〈2〉, HMCS-T〈3〉,
and HMCS-T〈4〉 resumed their wait from a previously aban-
doned node on 99%, 97%, 92%, and 47% occasions, respec-
tively at 10K timeout. A shallower lock is slow and has a
longer queue, which provides more chance of readmitting an
abandoned thread. The readmission fraction progressively
reduces with increased depth. HMCS-T〈4〉 offers the least
opportunity since the leaf-level queue length is at most two
in our setting.

Figure 11(a) and 11(b) respectively show the through-
put of both global and local tree operations at different
abort thresholds ranging from 101 to 108 CPU cycles for a
576-threaded experiment. HMCS〈4〉 has the highest global-
tree throughput followed by the other shallower hierarchical
locks. Throughput over the global tree can drop by about 2×
between 101 to 106 cycles timeout. MCS NB and CLH NB
become competitive for the global-tree operations only be-
yond 106 CPU cycles, which is a very high threshold. The
local-tree throughput drops as the timeout value increases
because few acquisitions timeout and hence few local-tree
operations are performed.

6.3 Lock Efficiency
To gain a unified view of the total work accomplished by a
lock among a set of locks under study, we compute the fol-
lowing relative metrics for each lock k. G(k): the ratio of
lock k’s global-tree throughput (critical work) to the max-
imum global-tree throughput by any lock under study with
the same settings, and L(k): the ratio of lock k’s local-tree
throughput (non-critical work) to the maximum local-tree
throughput by any lock under study with the same settings.
The sum of these two metrics can reach a theoretical maxi-
mum of 200%. We normalize it to 100%, which represents
the efficiency E(k) of a lock k. E quantifies the ability of
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(c) Local splay operations.

Figure 10: Lock throughput of different abortable locks. Timeout=10K CPU cycles.
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Figure 11: Impact of timeout on the throughput of local and global tree operations. The experiment has 576 threads.

Table 2: Left: resident memory and memory overhead w.r.t.
a TATAS-T lock. Right: efficiency (E) of locks— a unified
metric of critical and non-critical work accomplished. In
both experiments, the timeout is set to 10K CPU cycles, and
both experiments use 576 threads.

Efficiency

KB Overhead Global	(G) Local	(L) 	E	=	(G+L)/2

HMCS-T<1> 271,060 1x 29% 100% 64%
HMCS-T<2> 271,160 1x 31% 96% 64%
HMCS-T<3> 271,192 1x 62% 88% 75%
HMCS-T<4> 271,188 1x 100% 84% 92%
TATAS-T 271,020 1x 25% 60% 43%
MCS_NB 3,746,764 14x 1.62E-06% 0.83% 0.41%
CLH_NB 1,783,500 6.6x 1.62E-06% 1% 0.50%
A_C_BO_CLH 271,170 1x 11% 90% 51%

%	peak	throughputResident	memory

a lock to deliver high throughput of successful lock acquisi-
tions and also to expeditiously exit on timeout.

We computed G, L, and E metrics at 576 threads among
eight locks at 10K cycle timeout (right side of Table 2).
HMCS-T〈4〉 has the highest critical path throughput (G is
100%). Deep hierarchy helps in higher lock throughput, and
the throughput falls off for shallower locks. CLH NB and
MCS NB achieve only a small fraction of the peak through-
put. TATAS-T and A C BO CLH, respectively, achieve 25%
and 11% of HMCS-T〈4〉’s global tree throughput.

HMCS-T〈1〉 has the highest throughput on the non-
critical work (L is 100%). This is because HMCS-T〈1〉 is the
quickest to abandon on timeout and switch to perform local
tree operations. Abandoning in HMCS-T〈1〉 is a simple local
swap operation at one level, whereas abandoning in an inte-
rior node of a deeper HMCS-T may involve more operations.
L decreases for a deeper HMCS-T lock; HMCS〈4〉 achieves
84% of HMCS〈1〉’s non-critical work. Surprisingly, TATAS-
T has lower L despite the fact that an abort takes no memory
operation. This is because the CAS operation in TATAS-T
has a very high latency. If a thread issues a CAS closer to its
timeout, the CAS may complete thousands of cycles after the
timeout, which leads to a high protocol overhead.

In the combined metric (E), the deeper hierarchical
locks—HMCS-T〈3〉 and HMCS〈4〉—deliver higher effi-
ciency due to their exceeding superiority in critical work
over shallower locks. TATAS-T and A C BO CLH have re-
spectable efficiency, but both are unfair locks. CLH NB and
MCS NB have the lowest efficiency.

6.4 HMCS-T in an MPI+Threads BFS
Parallel breadth-first search (BFS) is an irregular, dynamic,
sparse data exchange (DSDE) algorithm. A process commu-
nicates with a small subset of processes (neighbors) while
the neighborhoods change dynamically over iterations. One
of the best-known algorithms for solving DSDE problems
is NBX [11]. In NBX , most of the data exchanges rely
on nonblocking point-to-point primitives and a process has
to poll manually for communication progress via APIs such
as MPI Iprobe or MPI Test in the context of MPI. We use
Amer et al. [2]’s multi-threaded NBX implementation of
the Graph500 BFS kernel, where threads in a process per-
form both computation and communication.

We use the MPICH-3.2 [1] MPI implementation, which
has a single lock to protect its core functionality [3, 4]. In a
highly threaded BFS run, the MPICH global lock becomes a
point of contention because of repeated calls to MPI Test by
different threads. Since MPI Test is only a progress check-
ing API, it can be aborted in favor of computation or non-
polling APIs, such as MPI Isend. With this intuition, we
substituted the MPICH-3.2 Pthread mutex lock with vari-
ous abortable locks allowing the MPI Test implementation
to abort; rest of the APIs do not abort. On abort, MPI Test

behaves as if the communication has not yet completed.
While the progress semantics of MPI require a continuously
checking thread to succeed if a matching operation has been
posted, such progress guarantee is conceivable in HMCS-T
by bounding the number of successive aborts by a thread.
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Figure 12: Scalability of BFS with 225 vertices using 4 MPI processes and varying
number of threads per MPI process. Pthread mutex, used by the original MPICH, does
not support timeout but is only shown for a comparison. HMCS-T〈3〉 has the best
absolute performance and superior scaling at 10K timeout.

We partition the 8-node shared-memory machine into
four MPI processes each with 72 cores; we do not use SMTs.
Further, we do not load all sockets fully to leave some cores
to run MPI daemons and scripts. We measured the BFS
graph traversal rate from 16 different root vertices and report
the average rate per root vertex in Figure 12 for various locks
(including the baseline Pthread mutex) at two timeout val-
ues: 100K CPU cycles and infinity (for comparison with the
traditional lock waiting regime). Our analysis showed that
the overall performance is strongly correlated to the time
spent in MPI Test and that changing the lock implemen-
tation has little effect on the other parts of the algorithm,
e.g., the computation or the amount of data transferred. The
degree of computation-communication overlap dictates the
performance variation across lock implementations.

At an infinite timeout, the performance peaks at nine
threads for all locks. Beyond 17 threads, the performance
collapses since more threads cause more wait in MPI Test,
hence more polling and less real communication. The only
lock that proved to be more robust is HMCS-T〈3〉, which
exploits locality, however, it still suffers 17% performance
loss at full concurrency compared to its peak.

With a timeout of 100K, every abortable lock performs
superior to its timeout=∞ counterpart (the base Pthread mu-
tex shown only for reference). At 100K timeout, the locks
reach their peaks at 17 cores but this time the peaks are
higher than those at timeout=∞. This indicates that bound-
ing the lock wait time improves the ability to overlap com-
munication with computation. All locks except HMCS-T〈3〉
collapse in their performance beyond 17 cores since: 1) the
cost of aborts is expensive in other locks due to inter-socket
and inter-node communication, and 2) when the lock is
passed to a remote requester, the locality is lost. HMCS-T〈3〉
by virtue of its fast abort and locality-aware lock hand-
off scales to a higher throughput (93.2 M edges/s) at 34
and 68 threads and alleviates the performance collapse seen
in the other locks. In particular, HMCS-T〈3〉 with a 100K
timeout achieves 30% higher peak performance than its un-
bounded counterpart. Furthermore, HMCS-T〈3〉 with 100K

timeout retains the same 30% speedup even when compared
against HMCS〈3〉 (not shown) although HMCS〈3〉 is ex-
pected to have slightly less protocol overhead compared to
HMCS-T〈3〉 with infinite timeout.

The top performance of HMCS-T〈3〉 (at 34-68 threads) is
34% higher than the top performance of the original Pthread
mutex (at 9 threads). At full concurrency, HMCS-T〈3〉 deliv-
ers 88% and 21% higher throughput than the next best per-
forming abortable lock (HMCS-T〈1〉) with an infinite and
100K timeout values, respectively. This justifies the virtue
of both locality awareness and abortability. HMCS-T〈3〉 at
a 100K timeout (with 93.2×106 edges/s) shows an impres-
sive 330% (4.3×) speedup over the original Pthread mutex-
based MPICH (with 21.5×106 edges/s) at full concurrency.
We also experimented with a CAS-based try-lock (not shown)
and observed a very poor scalability and a very low peak
performance since it is locality agnostic and generates indis-
criminate cache coherency traffic.

We experimented the previously mentioned IsLocked()

primitive with both HMCS-T〈3〉 (at several timeout val-
ues) and HMCS〈3〉. We invoked the underlying lock iff
the IsLocked() returned NOT LOCKED. We observed that
the graph traversal rate initially increased up to 140 mil-
lion edges/sec, but once the number of threads crossed a
socket, the throughput collapsed dramatically down to be-
low 90 million edges/sec because of the lost data locality.
IsLocked()+HMCS-T〈3〉 showed slightly worse perfor-
mance than merely using HMCS-T〈3〉 for the same time-
out values. IsLocked()+HMCS〈3〉 performed worse than
HMCS-T〈3〉 with ≤ 10K cycles timeout regardless of the
thread count.

These results clearly indicate that bounding lock waiting
times through an abort feature can help scale an otherwise
non-scalable code by exploiting parallel slackness.

7. Conclusions
In this paper, we designed the HMCS-T lock, a hierarchi-
cal queuing lock that can abandon the lock wait on a time-
out. Hierarchical queue-based locks combined with the time-
out feature offer two key advantages on many-core NUMA
systems—data locality and enhanced concurrency. HMCS-T
has bounded space and time complexity together with star-
vation freedom, which are rare in other abortable locks.
HMCS-T has high timing fidelity and outperforms several
state-of-the-art abortable locks in latency and throughput.
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